1: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:19:38.286 ID:x0fY4OSYM.net

※本来シャミ子は理系科目は壊滅ですが、それはそれとしてお楽しみ下さい
※共役複素数は数学板のルールに従い、‪α‬˜と書きます



3: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:21:11.636 ID:x0fY4OSYM.net

シャミ子「桃!ついにわかりましたよ!!」

桃「……なにが?」

シャミ子「複素数平面を攻略する方法です!」

シャミ子「だいたい複素数はいつもいつも計算が面倒なんです」

シャミ子「それをバッサバッサさばいていく魔法のどうぐを作り出しました」

桃「へぇ…シャミ子数学とか嫌いそうなのに意外」

シャミ子「どの科目も嫌いではないですよ。…できないだけで」

桃「ふーん…で、その発見ていうのはどんなものなのかな?」

シャミ子「おっ?知りたい?知りたいのか!?」フフーン

シャミ子「いいだろう、どうしてもというのなら特別に教えてあげます!」ドヤァ

桃「あっやっぱりいいやごめん」

シャミ子「ちょー!!聞いてくださいよお!」

桃「しょうがにゃいにゃあ…」



4: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:22:29.080 ID:x0fY4OSYM.net



シャミ子「まずですね、桃は実数条件を言えますか?」

桃「‪複素数‪α‬が実数のときα‬=‪α‬˜でしょ、常識」

シャミ子「ぐぬぬ…さらっとマウントとるのはやめて下さい」

シャミ子「じゃあ純虚数条件はどうですか?」

桃「‪α‬+‪α‬˜=0だね」

シャミ子「そうです、ちゃんと勉強してますね。えらい、えらいです」

桃「まあシャミ子より数学できるからね」

シャミ子「くっ…これで勝ったと思うなよ!」



5: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:23:49.168 ID:x0fY4OSYM.net



シャミ子「では複素数平面に行きましょう」

シャミ子「複素数をベクトルと見て下さい…なんかそういう感じのアレです」

シャミ子「分かりますか…?」

桃「分かるよ。つまり複素数‪α‬に対して、(Re(‪α‬),Im(‪α‬))っていうベクトルを想定しろ、って事でしょ?」

シャミ子「そうですそうです!…なんか私より明確に表現してて悔しいです」

桃「面倒だから複素数‪α‬に対してv(‪α‬)をv(‪α‬)=(Re(‪α‬),Im(‪α‬))と定義して、これを『複素数‪α‬の表すベクトル』と呼ぼうか」

桃「それで、このベクトルがどうしたのかな?」

シャミ子「はい。…ええとですね、さきほどの実数条件と純虚数条件は、図形的に見れば、それぞれ共線条件と直交条件に対応しているわけです」

シャミ子「言ってること分かりますか?」

桃「うん。要は『v(‪α‬)//v(β)⇔‪‪α‬/βが実数⇔‪α‬/β=(‪α‬/β)˜』みたいな事だよね」

シャミ子「そうです。桃は理解がはやいです」

桃「わたしたち以心伝心だね」

シャミ子「そ、そういうのはいいですから///」



6: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:24:45.116 ID:x0fY4OSYM.net



シャミ子「そこでなんですけど、実際図形を複素数平面上で扱っているときに、実数条件や純虚数条件をこの形で扱っていると、計算が面倒になりがちなんですよね」

桃「あーわかる、いつも筋肉で何とかしてたけど確かに面倒だね」

シャミ子「筋肉で…?」

桃「そこは引っかからなくていい。それで?」

シャミ子「そこでです!まぞくが便利どうぐを編み出しちゃったんです!」ハスー

桃「へー」



7: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:25:22.816 ID:x0fY4OSYM.net



シャミ子「反応が薄い……」

シャミ子「気を取り直して」

シャミ子「こんな感じの演算を用意します」

‪α‬*β=‪α‬β˜+‪α‬˜β…①
‪α‬°β=‪α‬β˜-‪α‬˜β…②

シャミ子「どうですか??」

桃「別になんとも…」

シャミ子「桃はまだまだですね!この素晴らしさが見抜けないとは!」フハハハハ!

桃「私より全体的にできないシャミ子に言われたくない」

シャミ子「うっ…正論のストレート球はやめてください」泣



8: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:26:24.056 ID:x0fY4OSYM.net



シャミ子「①や②の演算を使うと、なんと共線条件と直交条件がキレーにかけるんです!」

シャミ子「どう書けると思いますか?」

桃「う~ん…共線条件は‪α‬/β=(‪α‬/β)˜だから、両辺にββ˜をかけて移項すれば‪α‬β˜-‪α‬˜β=0、つまり‪α‬°β=0だね」

シャミ子「正解です!!」

桃「たしかに綺麗に書けてる。すごいねシャミ子、えらいえらい」ナデナデ

シャミ子「えへへへ…ちなみに直交条件の方は‪α‬*β=0となります」

桃「ふむ」



10: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:26:47.358 ID:x0fY4OSYM.net



シャミ子「ここまでだと、何のありがたみも感じられないと思います」

桃「うん」

シャミ子「ここで、一気に①②の書き方の便利さを紹介しちゃいましょう!」

シャミ子「まず①について、計算すれば分かりますが、次のことが成り立ちます」

‪α‬*β=β*‪α‬(交換法則)
(‪α‬+β)*γ=‪α‬*γ+β*γ(分配法則)

桃「おお、これはなかなかすごい」

シャミ子「そうでしょうそうでしょう!②については次が成り立ちます」

‪α‬°β=-β°‪α‬(準交換法則)
(‪α‬+β)°γ=‪α‬°γ+β°γ(分配法則)

桃「へー、よく見つけたね。すごいよシャミ子」ナデナデナデナデ

シャミ子「えへへ~」

シャミ子「これを使うとすごく計算が楽になるんですよ」

シャミ子「それでは実例を見てみましょう!」



11: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:27:37.223 ID:x0fY4OSYM.net



桃「うん。その前になんだけど、シャミ子はベクトルの内積は知ってるかな?」

シャミ子「ぶー、馬鹿にしないで下さい!それくらい分かります!」

桃「うん。じゃあ外積は?」

シャミ子「へ?がいせき…?…ちょっとそれは知ってなくもなくもないかもです」

桃「シャミ子は素直じゃないな。かわいい」

シャミ子「なっ///何を言ってるんですか!」

桃(煽ったつもりだけどなんか喜ばれた)

桃(まあいいや)



13: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:28:29.683 ID:x0fY4OSYM.net



桃「それでね、シャミ子の発見した演算っていうのは、単にベクトルの内積と外積を複素数で表したものになってるんだよ」

シャミ子「へ?」

桃「まず①の演算についてだけど、‪α‬*βの値はよく見ると実数になっているよね」

桃「それで直交条件が‪α‬*β=0」

桃「これはベクトルの内積に似てると思わない?実際、‪α‬*βの値はv(‪α‬)とv(β)の内積の2倍になってるんだよ」

‪α‬*β=‪α‬β˜+‪α‬˜β=2Re(‪α‬β˜)
=2(Re(‪α‬)Re(β)+Im(‪α‬)Im(β))=2v(‪α‬)・v(β)

シャミ子「ほ、ほんとだ……気づかなかった…」

桃「それで②の方は、v(‪α‬)をz成分が0の3次元ベクトルと見ると外積になる」

‪α‬°β=‪α‬β˜-‪α‬˜β=2Im(‪α‬β˜)
=2(-Re(‪α‬)Im(β)+Re(β)Im(‪α‬))
=(v(β)×v(‪α‬)のz成分の2倍)



15: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:29:46.558 ID:x0fY4OSYM.net



桃「だから、演算①②において交換法則や分配法則が成り立つのは、当然といえば当然だね」

シャミ子「つまり私の発見はもう既に誰かが見つけてた事だったんですね……」ショボーン…

桃「ま、まあシャミ子はよくかんがえたよ?」アセアセ

桃「ベクトルを持ち出さずに複素数のまま内積と外積が使えるなんて便利じゃん!」

シャミ子「そうでしょうか……そうですよね!」

シャミ子「やっぱり私はすごいまぞくです!」フンス

桃(なんと気分の変わりやすい…)

シャミ子「じゃあ気を取り直して、実例を見ていきましょう!」



16: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:30:21.960 ID:x0fY4OSYM.net



【問題】
ADとBCが平行な台形があるとします。
辺AB上に点Mを,辺DC上に点Nを,AN//MCとなるようにとると,
MDとBNも平行になると言えますか?

シャミ子「この問題を複素数を用いて解いていきます」

桃「ふむふむ」

シャミ子「では桃どうぞ!」

桃「え…私が解くんだ…まあいいけど」



17: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:30:59.425 ID:x0fY4OSYM.net



桃「まずはBを原点にとろうかな」

シャミ子「いい線いってますよ~」

桃「まだ超序盤なんだけど……」

桃「A(‪α‬)、C(γ)、D(δ)、M(m)、N(n)としよう」

桃「まずはMがAB上にあること、NがCD上にあること、AN//MCであること、AD//BCであることから、次のように書けるね」

共線条件
‪α‬°m=0…(1)
(n-δ)°(γ-δ)=0…(2)
(‪α‬-n)°(m-γ)=0…(3)
(δ-‪α‬)°γ=0…(4)

シャミ子「ちゃんと私の記法を使ってくれてますね!嬉しいです」



18: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:31:42.603 ID:x0fY4OSYM.net



桃「示すことは、MD//BNだから、これも式に書くと次のようになる」

n°(m-δ)=0…(5)

桃「これを(1)~(4)からひねり出せばいいだけだね」

シャミ子「そのとーりです!さすが桃!」

桃「問題を解く時の心構えは、『与えられた条件は全てどこかしらで必ず使う』だよシャミ子」キリッ

シャミ子「はぁ…」

桃「(5)の左辺を展開して出てくるn°mとn°δに、(2)(3)を無理やり代入して、条件を消化していこう」

桃「(2)よりn°δ=n°γ-δ°γ」

桃「(3)よりn°m=‪α‬°m-‪α‬°γ+n°γ」

桃「これらを(5)の左辺に代入すると次のようになるね」

(左辺)=n°δ-n°m=-δ°γ-‪α‬°m+‪α‬°γ…(6)

桃「ここで(1)(4)の出番だね。(1)から‪α‬°m=0、(4)からδ°γ-‪α‬°γ=0だから、結局(6)の値は0になる」

桃「したがって(5)が導かれたね」

シャミ子「おめでとうございます桃!大正解です!」



19: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:32:12.497 ID:x0fY4OSYM.net



シャミ子「どうでしたか?簡潔に書けるありがたみが分かったでしょうか?」

桃「思ったよりすごい記法だったね。すごいよシャミ子」

シャミ子「ありがとうございます!次のテストではいい点が取れそうです!」

桃「じゃあまた私と勝負しようか、今度は数学で」

シャミ子「うっ…そ、それは少しきついです…」

桃「私に勝てたら、その…この前言ってた『闇落ちコスでシンプルにデレデレ』をやってあげなくもないよ…?///」

シャミ子「!!!ほんとうですか!?」

シャミ子「その勝負受けました!もうキャンセルは認めません!」

シャミ子「今から猛勉強です!!」

桃「そ、そんなに私のコスが見たいかな…///」

桃「じゃあ私が勝ったらなんでも1つお願いを聞いてもらえる権利ね」

シャミ子「ま、まあいいでしょう…どんとこいです!」

頑張れシャミ子
数強になるんだ
end



20: 以下、?ちゃんねるからVIPがお送りします 2019/11/03(日) 00:32:45.140 ID:x0fY4OSYM.net

くぅ~疲
興味ある人だけ楽しんでもらえればと思います
pixivに載せます


元スレ
【SS】シャミ子「今日は数学まぞくです!」